¿Qué
es un agujero negro?
Para entender lo que es un agu negro empecemos
por una estrella como el Sol. El Sol tiene un diámetro de 1.390.000 kilómetros
y una masa 330.000 veces superior a la de la Tierra. Teniendo en cuenta esa
masa y la distancia de la superficie al centro se demuestra que cualquier
objeto colocado sobre la superficie del Sol estaría sometido a una atracción
gravitatoria 28 veces superior a la gravedad terrestre en la superficie.
Una estrella corriente conserva su tamaño normal gracias al equilibrio entre una altísima temperatura central, que tiende a expandir la sustancia estelar, y la gigantesca atracción gravitatoria, que tiende a contraerla y estrujarla.
Si en un momento dado la temperatura interna desciende, la gravitación se hará dueña de la situación. La estrella comienza a contraerse y a lo largo de ese proceso la estructura atómica del interior se desintegra. En lugar de átomos habrá ahora electrones, protones y neutrones sueltos. La estrella sigue contrayéndose hasta el momento en que la repulsión mutua de los electrones contrarresta cualquier contracción ulterior.
Una estrella corriente conserva su tamaño normal gracias al equilibrio entre una altísima temperatura central, que tiende a expandir la sustancia estelar, y la gigantesca atracción gravitatoria, que tiende a contraerla y estrujarla.
Si en un momento dado la temperatura interna desciende, la gravitación se hará dueña de la situación. La estrella comienza a contraerse y a lo largo de ese proceso la estructura atómica del interior se desintegra. En lugar de átomos habrá ahora electrones, protones y neutrones sueltos. La estrella sigue contrayéndose hasta el momento en que la repulsión mutua de los electrones contrarresta cualquier contracción ulterior.
La estrella es ahora una «enana blanca». Si una
estrella como el Sol sufriera este colapso que conduce al estado de enana
blanca, toda su masa quedaría reducida a una esfera de unos 16.000 kilómetros
de diámetro, y su gravedad superficial (con la misma masa pero a una distancia
mucho menor del centro) sería 210.000 veces superior a la de la Tierra.
Clasificación Teórica.
Según su origen, teóricamente
pueden existir al menos tres clases de agujeros negros:
Según
la masa.
- Agujeros Negros
Supermasivos: Con
masa de varios millones de masas solares se
hallarían en el corazón de muchas galaxias. Se forman en el mismo proceso
que da origen a los componentes esféricos de las galaxias.
- Agujeros
Negros de Masa Estelar: Se forman cuando una estrella de masa 2,5 veces mayor que la del
Sol se convierte en supernova e implosiona. Su núcleo se
concentra en un volumen muy pequeño que cada vez se va reduciendo
más. Este es el tipo de agujeros negros postulados por primera vez dentro
de la teoría de la relatividad general.
- Micro agujeros negros: Son objetos hipotéticos, algo más pequeños que los estelares. Si son suficientemente pequeños, pueden llegar a evaporarse en un período relativamente corto mediante emisión de radiación de Hawking. Este tipo de entidades físicas es postulado en algunos enfoques de la gravedad cuántica, pero no pueden ser generados por un proceso convencional de colapso gravitatorio, el cual requiere masas superiores a la del Sol.
Según sus propiedades físicas.
Para un agujero negro descrito
por las ecuaciones de Albert Einstein, existe un teorema denominado de sin
pelos (en inglés No-hair theorem), que afirma que cualquier
objeto que sufra un colapso gravitatorio alcanza un estado estacionario como
agujero negro descrito sólo por 3 parámetros: su masa, su carga y su momento
angular. Así tenemos la siguiente
clasificación para el estado final de un agujero negro:
- El agujero negro más sencillo posible es el agujero negro de Schwarzschild, que no rota ni tiene carga.
- Si no gira pero posee carga eléctrica, se tiene el llamado agujero negro de Reissner-Nordstrøm.
- Un agujero negro en rotación y sin carga es un agujero negro de Kerr.
- Si además posee carga, hablamos de un agujero negro de Kerr-Newman.
Stephen Hawking y los conos luminosos.
El científico británico Stephen W. Hawking ha dedicado buena parte de su trabajo al estudio de los agujeros negros.
En su libro Historia del Tiempo explica cómo, en una estrella que se está colapsando, los conos luminosos que emite empiezan a curvarse en la superficie de la estrella.
Al hacerse pequeña, el campo gravitatorio crece y los conos de luz se inclinan cada vez más, hasta que ya no pueden escapar. La luz se apaga y se vuelve negro.
Si un componente de una estrella binaria se convierte en agujero negro, toma material de su compañera. Cuando el remolino se acerca al agujero, se mueve tan deprisa que emite rayos X. Así, aunque no se puede ver, se puede detectar por sus efectos sobre la materia cercana
Los agujeros negros no son eternos. Aunque no se escape ninguna radiación, parece que pueden hacerlo algunas partículas atómicas y subatómicas.
Alguien que observase la formación de un agujero negro desde el exterior, vería una estrella cada vez más pequeña y roja hasta que, finalmente, desaparecería. Su influencia gravitatoria, sin embargo, seguiría intacta.
En su libro Historia del Tiempo explica cómo, en una estrella que se está colapsando, los conos luminosos que emite empiezan a curvarse en la superficie de la estrella.
Al hacerse pequeña, el campo gravitatorio crece y los conos de luz se inclinan cada vez más, hasta que ya no pueden escapar. La luz se apaga y se vuelve negro.
Si un componente de una estrella binaria se convierte en agujero negro, toma material de su compañera. Cuando el remolino se acerca al agujero, se mueve tan deprisa que emite rayos X. Así, aunque no se puede ver, se puede detectar por sus efectos sobre la materia cercana
Los agujeros negros no son eternos. Aunque no se escape ninguna radiación, parece que pueden hacerlo algunas partículas atómicas y subatómicas.
Alguien que observase la formación de un agujero negro desde el exterior, vería una estrella cada vez más pequeña y roja hasta que, finalmente, desaparecería. Su influencia gravitatoria, sin embargo, seguiría intacta.
Como en el Big Bang, en los agujeros negros se da una singularidad, es decir, las leyes físicas y la capacidad de predicción fallan. En consecuencia, ningún observador externo puede ver qué pasa dentro.
Las ecuaciones que intentan explicar una singularidad de los agujeros negros han de tener en cuenta el espacio y el tiempo. Las singularidades se situarán siempre en el pasado del observador (como el Big Bang) o en su futuro (como los colapsos gravitatorios). Esta hipótesis se conoce con el nombre de "censura cósmica".
Las ecuaciones que intentan explicar una singularidad de los agujeros negros han de tener en cuenta el espacio y el tiempo. Las singularidades se situarán siempre en el pasado del observador (como el Big Bang) o en su futuro (como los colapsos gravitatorios). Esta hipótesis se conoce con el nombre de "censura cósmica".
No hay comentarios:
Publicar un comentario